Different aspects of the Tower of Hanoi game

Sandi Klavžar

Fakulteta za matematiko in fiziko, Univerza v Ljubljani
Fakulteta za naravoslovje in matematiko, Univerza v Mariboru

Dipartimento di Mathematica e Informatica
Università degli Studi di Trieste 29 September 2017

Classical problem

Édouard Lucas: the cover plate of the Tower of Hanoi from 1883

N. Claus (de Siam)

Lucas d'Amiens

The legend

- 64 golden discs.

The legend

- 64 golden discs.
- 3 diamond needles.

The legend

- 64 golden discs.
- 3 diamond needles.
- Task: transfer all discs from one needle to another obeying the divine rule.

The legend

- 64 golden discs.
- 3 diamond needles.
- Task: transfer all discs from one needle to another obeying the divine rule.
- When the task is finished ... "with a thunderclap the world will vanish."

The legend

- 64 golden discs.
- 3 diamond needles.
- Task: transfer all discs from one needle to another obeying the divine rule.
- When the task is finished ... "with a thunderclap the world will vanish."
- Optimal solution is unique and requires $2^{64}-1$ moves.

The legend

- 64 golden discs.
- 3 diamond needles.
- Task: transfer all discs from one needle to another obeying the divine rule.
- When the task is finished ... "with a thunderclap the world will vanish."
- Optimal solution is unique and requires $2^{64}-1$ moves.
- $2^{64}-1=18446744073709551615$.

The legend

- 64 golden discs.
- 3 diamond needles.
- Task: transfer all discs from one needle to another obeying the divine rule.
- When the task is finished ... "with a thunderclap the world will vanish."
- Optimal solution is unique and requires $2^{64}-1$ moves.
- $2^{64}-1=18446744073709551615$.
- Move/second: $5.849424 \cdot 10^{11}$ years $=585$ billion years.

Mathematikum Gießen - exponential growth

Mathematikum Gießen - "The Tower of lonah"

Recursive solution

Procedure $\mathrm{ToH}(n, i, j)$
Parameter n : number of discs
Parameter i : source peg, $i \in\{0,1,2\}$
Parameter j : goal peg, $j \in\{0,1,2\}$

Recursive solution

Procedure $\mathrm{ToH}(n, i, j)$
Parameter n : number of discs
Parameter i : source peg, $i \in\{0,1,2\}$
Parameter j : goal peg, $j \in\{0,1,2\}$
if $n \neq 0$ and $i \neq j$ then

Recursive solution

Procedure $\mathrm{ToH}(n, i, j)$
Parameter n : number of discs
Parameter i : source peg, $i \in\{0,1,2\}$
Parameter j : goal peg, $j \in\{0,1,2\}$
if $n \neq 0$ and $i \neq j$ then
$k \leftarrow 3-i-j$

Recursive solution

Procedure $\mathrm{ToH}(n, i, j)$
Parameter n : number of discs
Parameter i : source peg, $i \in\{0,1,2\}$
Parameter j : goal peg, $j \in\{0,1,2\}$
if $n \neq 0$ and $i \neq j$ then
$k \leftarrow 3-i-j$
$\mathrm{ToH}(n-1, i, k)$

Recursive solution

Procedure $\mathrm{ToH}(n, i, j)$
Parameter n : number of discs
Parameter i : source peg, $i \in\{0,1,2\}$
Parameter j : goal peg, $j \in\{0,1,2\}$
if $n \neq 0$ and $i \neq j$ then
$k \leftarrow 3-i-j$
$\mathrm{ToH}(n-1, i, k)$
move disc n from peg i to peg j

Recursive solution

Procedure $\mathrm{ToH}(n, i, j)$
Parameter n : number of discs
Parameter i : source peg, $i \in\{0,1,2\}$
Parameter j : goal peg, $j \in\{0,1,2\}$
if $n \neq 0$ and $i \neq j$ then
$k \leftarrow 3-i-j$
$\mathrm{ToH}(n-1, i, k)$
move disc n from peg i to peg j
$\mathrm{ToH}(n-1, k, j)$

Olive's algorithm

Procedure Olive (n, i, j)
Parameters n, i, j : number of discs, source peg, goal peg

Olive's algorithm

Procedure Olive (n, i, j)
Parameters n, i, j : number of discs, source peg, goal peg
if n odd then move disc 1 from peg i to peg j
else
move disc 1 from peg i to peg $3-i-j$
end if

Olive's algorithm

Procedure Olive(n, i, j)
Parameters n, i, j : number of discs, source peg, goal peg
if n odd then move disc 1 from peg i to peg j
else
move disc 1 from peg i to peg $3-i-j$
end if
remember move direction of peg 1

Olive's algorithm

Procedure Olive(n, i, j)
Parameters n, i, j : number of discs, source peg, goal peg
if n odd then move disc 1 from peg i to peg j
else
move disc 1 from peg i to peg $3-i-j$
end if
remember move direction of peg 1
while not all discs are on peg j

Olive's algorithm

Procedure Olive(n, i, j)
Parameters n, i, j : number of discs, source peg, goal peg
if n odd then move disc 1 from peg i to peg j
else
move disc 1 from peg i to peg $3-i-j$
end if
remember move direction of peg 1
while not all discs are on peg j
make legal move of disc not equal 1

Olive's algorithm

Procedure Olive(n, i, j)
Parameters n, i, j : number of discs, source peg, goal peg
if n odd then move disc 1 from peg i to peg j
else
move disc 1 from peg i to peg $3-i-j$
end if
remember move direction of peg 1
while not all discs are on peg j
make legal move of disc not equal 1
make one move of disc 1 cyclically in its proper direction end while

Hanoi graphs

The problem can be naturally modelled with graphs. Formally:

Hanoi graphs

The problem can be naturally modelled with graphs. Formally:

- Regular state: $s=s_{n} \ldots s_{1} \in\{0,1,2\}^{n}$, s_{i} is the peg on which disk i is lying.

Hanoi graphs

The problem can be naturally modelled with graphs. Formally:

- Regular state: $s=s_{n} \ldots s_{1} \in\{0,1,2\}^{n}, s_{i}$ is the peg on which disk i is lying.
- H_{3}^{n} : vertices are regular states: $V\left(H_{3}^{n}\right)=\{0,1,2\}^{n}$.

Hanoi graphs

The problem can be naturally modelled with graphs. Formally:

- Regular state: $s=s_{n} \ldots s_{1} \in\{0,1,2\}^{n}$, s_{i} is the peg on which disk i is lying.
- H_{3}^{n} : vertices are regular states: $V\left(H_{3}^{n}\right)=\{0,1,2\}^{n}$.
- An edge represents a move of a discs from one peg to another:

$$
E\left(H_{3}^{n}\right)=\left\{\left\{\underline{s} i(3-i-j)^{d-1}, \underline{s} j(3-i-j)^{d-1}\right\} \mid \underline{s} \in\{0,1,2\}^{n-d}\right\} .
$$

Hanoi graphs

The problem can be naturally modelled with graphs. Formally:

- Regular state: $s=s_{n} \ldots s_{1} \in\{0,1,2\}^{n}$, s_{i} is the peg on which disk i is lying.
- H_{3}^{n} : vertices are regular states: $V\left(H_{3}^{n}\right)=\{0,1,2\}^{n}$.
- An edge represents a move of a discs from one peg to another: $E\left(H_{3}^{n}\right)=\left\{\left\{\underline{s} i(3-i-j)^{d-1}, \underline{s} j(3-i-j)^{d-1}\right\} \mid \underline{s} \in\{0,1,2\}^{n-d}\right\}$.
- $\left|V\left(H_{3}^{n}\right)\right|=3^{n}$.

Hanoi graphs

The problem can be naturally modelled with graphs. Formally:

- Regular state: $s=s_{n} \ldots s_{1} \in\{0,1,2\}^{n}$, s_{i} is the peg on which disk i is lying.
- H_{3}^{n} : vertices are regular states: $V\left(H_{3}^{n}\right)=\{0,1,2\}^{n}$.
- An edge represents a move of a discs from one peg to another:

$$
E\left(H_{3}^{n}\right)=\left\{\left\{\underline{s} i(3-i-j)^{d-1}, \underline{s} j(3-i-j)^{d-1}\right\} \mid \underline{s} \in\{0,1,2\}^{n-d}\right\} .
$$

- $\left|V\left(H_{3}^{n}\right)\right|=3^{n}$.
- $\left|E\left(H_{3}^{n}\right)\right|=\frac{3}{2}\left(3^{n}-1\right)$.

Hanoi graphs -cont'd

Hanoi graphs -cont'd

Variations of the Puzzle

What is a Tower of Hanoi variant?

- Pegs are distinguishable.

What is a Tower of Hanoi variant?

- Pegs are distinguishable.
- Discs are distinguishable.

What is a Tower of Hanoi variant?

- Pegs are distinguishable.
- Discs are distinguishable.
- Discs are on pegs all the time except for moves.

What is a Tower of Hanoi variant?

- Pegs are distinguishable.
- Discs are distinguishable.
- Discs are on pegs all the time except for moves.
- One or more discs can only be moved from the top of a stack.

What is a Tower of Hanoi variant?

- Pegs are distinguishable.
- Discs are distinguishable.
- Discs are on pegs all the time except for moves.
- One or more discs can only be moved from the top of a stack.
- Task: given an initial distribution of discs among pegs and a goal distribution of discs among pegs, find a shortest sequence of moves that transfers discs from the initial state to the final state obeying the rules.

Tremendous number of different variations still possible

- There can be an arbitrary number of pegs.

Tremendous number of different variations still possible

- There can be an arbitrary number of pegs.
- Pegs can be distinguished also by their heights, that is, by the number of discs they can hold.

Tremendous number of different variations still possible

- There can be an arbitrary number of pegs.
- Pegs can be distinguished also by their heights, that is, by the number of discs they can hold.
- Discs can be distinguished in size and/or color.

Tremendous number of different variations still possible

- There can be an arbitrary number of pegs.
- Pegs can be distinguished also by their heights, that is, by the number of discs they can hold.
- Discs can be distinguished in size and/or color.
- (Certain) irregular (with respect to TH rules) states may be admitted.

Tremendous number of different variations still possible

- There can be an arbitrary number of pegs.
- Pegs can be distinguished also by their heights, that is, by the number of discs they can hold.
- Discs can be distinguished in size and/or color.
- (Certain) irregular (with respect to TH rules) states may be admitted.
- More than one top disc may be moved in a single move.

Tremendous number of different variations still possible

- There can be an arbitrary number of pegs.
- Pegs can be distinguished also by their heights, that is, by the number of discs they can hold.
- Discs can be distinguished in size and/or color.
- (Certain) irregular (with respect to TH rules) states may be admitted.
- More than one top disc may be moved in a single move.
- There can be additional restrictions or relaxations on moves, the latter even violating the divine rule.

Tremendous number of different variations still possible

- There can be an arbitrary number of pegs.
- Pegs can be distinguished also by their heights, that is, by the number of discs they can hold.
- Discs can be distinguished in size and/or color.
- (Certain) irregular (with respect to TH rules) states may be admitted.
- More than one top disc may be moved in a single move.
- There can be additional restrictions or relaxations on moves, the latter even violating the divine rule.
- And, of course, any combination of the above.

More than three pegs

- The same task but with four or more pegs.

More than three pegs

- The same task but with four or more pegs.
- Determine the optimal number of moves! Problem posed in American Mathematical Monthy, 1939.

More than three pegs

- The same task but with four or more pegs.
- Determine the optimal number of moves! Problem posed in American Mathematical Monthy, 1939.
- Frame-Stewart algorithm, 1941.

More than three pegs

- The same task but with four or more pegs.
- Determine the optimal number of moves! Problem posed in American Mathematical Monthy, 1939.
- Frame-Stewart algorithm, 1941.
- For four pegs verified by computer up to 30 disc (Korf, 2008).

More than three pegs

- The same task but with four or more pegs.
- Determine the optimal number of moves! Problem posed in American Mathematical Monthy, 1939.
- Frame-Stewart algorithm, 1941.
- For four pegs verified by computer up to 30 disc (Korf, 2008).
- Thierry Bousch, 2014, solved the problem for four pegs!
- Which task is most demanding? Korf phenomenon:
$n=15,20$!

The Hanoi graph H_{4}^{2}

The Hanoi graph H_{4}^{4}

Different aspects of the Tower of Hanoi game

Lucas variant from 1889

- 16 discs of mutually different sizes.
- Task: transfer all discs onto the middle peg: $(1234)^{4} \rightarrow 0^{16}$.
- Optimal solution has 63 moves (computer experiment).
- Second task: $1^{4} 2^{4} 3^{4} 4^{4} \rightarrow 0^{16}$.
- Optimal solution has 54 moves (computer experiment).

The Tower of Antwerpen

- 3 pegs, $3 \times n$ identical discs-except in color.
- A peg can hold an arbitrary number of discs.
- Discs of the same size may be put on top of each other.
- Task: each tower rests on a different peg than originally.
- Theorem: the TA puzzle with $3 n$ discs can be solved in the optimal number of $3 \cdot 2^{n+2}-8 n-10$ moves.

The Tower of London

- 3 pegs that can hod up to 1,2 , and 3 balls, respectively.

The Tower of London

- 3 pegs that can hod up to 1,2 , and 3 balls, respectively.
- 3 differently colored balls.

The Tower of London

- 3 pegs that can hod up to 1,2 , and 3 balls, respectively.
- 3 differently colored balls.
- Goal: reach a specified state from another designated state in the minimum number of moves.

The graph L

- State graph L: 36 vertices with degrees 2,3 , and 4:

The graph L

- State graph L: 36 vertices with degrees 2, 3, and 4:

Hamiltonian path in L

The graph L again

London tower - generalization $L_{h}^{n}\left(L_{234}^{4}\right)$

Tower of Hanoi with oriented disc moves

- 3 pegs, n discs.

Tower of Hanoi with oriented disc moves

- 3 pegs, n discs.
- Moves between specified ordered pairs of pegs forbidden.

Tower of Hanoi with oriented disc moves

- 3 pegs, n discs.
- Moves between specified ordered pairs of pegs forbidden.
- Task: reach a perfect state from another perfect state in the minimum number of moves.

Tower of Hanoi with oriented disc moves

- 3 pegs, n discs.
- Moves between specified ordered pairs of pegs forbidden.
- Task: reach a perfect state from another perfect state in the minimum number of moves.
- Not all tasks are solvable.

Tower of Hanoi with oriented disc moves

- 3 pegs, n discs.
- Moves between specified ordered pairs of pegs forbidden.
- Task: reach a perfect state from another perfect state in the minimum number of moves.
- Not all tasks are solvable.
- Such a variant is uniquely specified by a corresponding digraph D.

Tower of Hanoi with oriented disc moves

- 3 pegs, n discs.
- Moves between specified ordered pairs of pegs forbidden.
- Task: reach a perfect state from another perfect state in the minimum number of moves.
- Not all tasks are solvable.
- Such a variant is uniquely specified by a corresponding digraph D.
- Short description: TH(D).

Oriented disc moves - cont'd

$T H(D)$ is solvable if for any choice of source and goal pegs and for every number of discs there exists a sequence of legal moves.

Oriented disc moves - cont'd

$T H(D)$ is solvable if for any choice of source and goal pegs and for every number of discs there exists a sequence of legal moves.

Proposition

The Linear TH is solvable. Its state graph is the path on 3^{n} vertices between the perfect states on pegs 0 and 2. In particular, the optimal solution for any task is unique.

Oriented disc moves - cont'd

$T H(D)$ is solvable if for any choice of source and goal pegs and for every number of discs there exists a sequence of legal moves.

Proposition

The Linear TH is solvable. Its state graph is the path on 3^{n} vertices between the perfect states on pegs 0 and 2. In particular, the optimal solution for any task is unique.

A digraph $D=(V(D), A(D))$ is called strongly connected if for any distinct vertices $u, v \in V(D)$ there is a directed path from u to v and a directed path from v to u.

Oriented disc moves - cont'd

$T H(D)$ is solvable if for any choice of source and goal pegs and for every number of discs there exists a sequence of legal moves.

Proposition

The Linear TH is solvable. Its state graph is the path on 3^{n} vertices between the perfect states on pegs 0 and 2. In particular, the optimal solution for any task is unique.

A digraph $D=(V(D), A(D))$ is called strongly connected if for any distinct vertices $u, v \in V(D)$ there is a directed path from u to v and a directed path from v to u.

Theorem

Let $D=(V(D), A(D))$ be a digraph with at least three vertices. Then $T H(D)$ is solvable if and only if D is strong.

Strongly connected digraphs of order 3

More on the classical task

Additional tasks

- How to continue from an abandoned state?

Additional tasks

- How to continue from an abandoned state?
- How to determine whether we are on an optimal path?

Additional tasks

- How to continue from an abandoned state?
- How to determine whether we are on an optimal path?
- How to reach a perfect state from an arbitrary regular state?

Additional tasks

- How to continue from an abandoned state?
- How to determine whether we are on an optimal path?
- How to reach a perfect state from an arbitrary regular state?
- How to reach an arbitrary state from an arbitrary state?

Additional tasks

- How to continue from an abandoned state?
- How to determine whether we are on an optimal path?
- How to reach a perfect state from an arbitrary regular state?
- How to reach an arbitrary state from an arbitrary state?
- How to determine whether given disc moves once or twice?

Additional tasks

- How to continue from an abandoned state?
- How to determine whether we are on an optimal path?
- How to reach a perfect state from an arbitrary regular state?
- How to reach an arbitrary state from an arbitrary state?
- How to determine whether given disc moves once or twice?
- How to reach a perfect state from an irregular state?

Non-repetitive sequences

A sequence $a=\left(a_{n}\right)_{n \in \mathbb{N}}$ of symbols a_{n} from an alphabet A is called non-repetitive or square-free (over A) if it does not contain a subsequence

$$
a_{i+1}, a_{i+2}, \ldots, a_{i+2 m}
$$

such that

Non-repetitive sequences

A sequence $a=\left(a_{n}\right)_{n \in \mathbb{N}}$ of symbols a_{n} from an alphabet A is called non-repetitive or square-free (over A) if it does not contain a subsequence

$$
a_{i+1}, a_{i+2}, \ldots, a_{i+2 m}
$$

such that

$$
a_{i+j}=a_{i+j+m}, \quad j=1, \ldots, m
$$

Examples

- $1,2,1,3,1,2,3,1,2,1$

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- 1 ,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- 1, 2,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- 1, 2, 3,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- 1, 2, 3, 4,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- 1, 2, 3, 4, 5,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- 1 ,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- 1, 2,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- 1, 2, 1,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- 1, 2, 1, 3,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- 1, 2, 1, 3, 1 ,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- 1, 2, 1, 3, 1, 2 ,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- 1, 2, 1, 3, 1, 2, 1 ,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- $1,2,1,3,1,2,1,4$,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- $1,2,1,3,1,2,1,4,1$,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- $1,2,1,3,1,2,1,4,1,2$,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- $1,2,1,3,1,2,1,4,1,2,1$,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- $1,2,1,3,1,2,1,4,1,2,1,3$,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- $1,2,1,3,1,2,1,4,1,2,1,3,1$,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- $1,2,1,3,1,2,1,4,1,2,1,3,1,2$,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- $1,2,1,3,1,2,1,4,1,2,1,3,1,2,1$,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- $1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5$,

Examples

- $1,2,1,3,1,2,3,1,2,1$
- $1,2,1,3,1,2,3,1,2,1$
- $1,2,3,4,5,6, \ldots$
- Let's find a non-repetitive sequence with the greedy strategy:
- $1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1, \ldots$

The classical task with 4 discs

The classical task with 4 discs

1

The classical task with 4 discs

12

The classical task with 4 discs

121

The classical task with 4 discs

The classical task with 4 discs

12131

The classical task with 4 discs

121312

The classical task with 4 discs

1213121412

The classical task with 4 discs

12131214121

The classical task with 4 discs

121312141213

The classical task with 4 discs

The classical task with 4 discs

The classical task with 4 discs

The classical task with 4 discs cont'd

Let's code moves as follows:

The classical task with 4 discs cont'd

Let's code moves as follows:

- Move from peg 1 to 2: a

The classical task with 4 discs cont'd

Let's code moves as follows:

- Move from peg 1 to 2: a
- Move from peg 2 to $3: b$

The classical task with 4 discs cont'd

Let's code moves as follows:

- Move from peg 1 to 2: a
- Move from peg 2 to $3: b$
- Move from peg 3 to 1: c

The classical task with 4 discs cont'd

Let's code moves as follows:

- Move from peg 1 to 2: a
- Move from peg 2 to $3: b$
- Move from peg 3 to 1: c
- Move from peg 2 to 1 : \bar{a}

The classical task with 4 discs cont'd

Let's code moves as follows:

- Move from peg 1 to 2: a
- Move from peg 2 to 3: b
- Move from peg 3 to 1: c
- Move from peg 2 to $1: \bar{a}$
- Move from peg 3 to $2: \bar{b}$

The classical task with 4 discs cont'd

Let's code moves as follows:

- Move from peg 1 to 2: a
- Move from peg 2 to 3: b
- Move from peg 3 to 1: c
- Move from peg 2 to $1: \bar{a}$
- Move from peg 3 to $2: \bar{b}$
- Move from peg 1 to $3: \bar{c}$

The classical task with 4 discs cont'd

The classical task with 4 discs cont'd

a

The classical task with 4 discs cont'd

$a \bar{c}$

The classical task with 4 discs cont'd

$a \bar{c} b$

The classical task with 4 discs cont'd

The classical task with 4 discs cont'd

$a \bar{c} b a c$

The classical task with 4 discs cont'd

The classical task with 4 discs cont＇d

The classical task with 4 discs cont'd

The classical task with 4 discs cont'd

The classical task with 4 discs cont'd

$a \bar{c} b a c \bar{b} a \bar{c} b \bar{a}$

The classical task with 4 discs cont'd

6 symbols suffice

6 symbols suffice

Theorem (Allouche, Astoorian, Randall, Shallit, 1994)

ToH sequence

$$
a, \bar{c}, b, a, c, \bar{b}, a, \bar{c}, b, \bar{a}, c, b, a, \bar{c}, b, \ldots
$$

is non-repetitive.

There is more

Consider

$$
(a, \bar{c}, b),(a, c, \bar{b}),(a, \bar{c}, b),(\bar{a}, c, b),(a, \bar{c}, b), \ldots
$$

There is more

Consider

$$
(a, \bar{c}, b),(a, c, \bar{b}),(a, \bar{c}, b),(\bar{a}, c, b),(a, \bar{c}, b), \ldots
$$

There exists exactly five types of such triples:

$$
(a, \bar{c}, b) \quad(a, c, \bar{b}) \quad(\bar{a}, c, b) \quad(a, c, b) \quad(\bar{a}, c, \bar{b}) .
$$

There is more

Consider

$$
(a, \bar{c}, b),(a, c, \bar{b}),(a, \bar{c}, b),(\bar{a}, c, b),(a, \bar{c}, b), \ldots
$$

There exists exactly five types of such triples:

$$
\begin{array}{lllll}
(a, \bar{c}, b) & (a, c, \bar{b}) & (\bar{a}, c, b) & (a, c, b) & (\bar{a}, c, \bar{b}) .
\end{array}
$$

Therefore:

Theorem (Hinz, 1996)

ToH yields an infinite non-repetitive sequence using five symbols only.

Thank you for your attention!

