

"Why should we care For the fate of Antarctica?"

Florence Colleoni

fcolleoni@ogs.it

What are climate changes?

Earth radiative balance

Unità W m⁻²

Heat emitted by the Earth (inner + surface)

Heat emitted by the Earth (inner + surface)

Heat emitted by the Earth (inner + surface)

Heat emitted by the Earth (inner + surface)

Heat emitted by the Earth (inner + surface)

Traps the heat And amplify surface Temperature

Heat emitted by the Earth inner + surface)

Traps the heat And amplify surface Temperature

Heat emitted by the Earth (inner + surface)

Traps the heat And amplify surface Temperature

CO₂ concentration

Atmospheric CO₂ reconstruction from Antarctic ice cores records

Source: EPICA Project (Antarctica); Nasa Climate Change

Radiative unbalance

Radiative unbalance

Ocean: thermo-regulator

Atmosphere: low heat capacity

Ocean: large heat capacity

Current climate

Temperature evolution since 1880

Source: NASA Climate Change

Temperature evolution since 1880

Source: NASA Climate Change

Sea level changes

Sea Level change in Trieste

+3.5 - 4 mm/year in Trieste

Tide gauge

Sezione della cabina mareografica presso il Molo Sartorio

la cabina mareografica prima e dopo l'inglobamento nella nuova sede dello Yacht Club Adriaco avvenuta nel 2004

Steric Effect

Global mean

+ **1.4 mm/year** Averaged over 2006-2015

"The Ocean and the cryosphere in a changing climate", IPCC SROCC, Sept- 2019

Land ice

+1.9 mm/year average 2006-2015

0.61 mm/year

Mountain glaciers

Smith et al. (2020)

Sea Level rise

Global mean Average: 2006-2015

Current rate of sea level rise: +3.3 mm/year

+18 cm since 1900

Greenland Mountain glacier Antarctica

+1.9 mm/year

+ 1.4 mm/year

Oceanic expansion (Steric effect)

+3.4 mm/year in Trieste

Source: IPCC, 2019, 2021

Observed sea level changes

Satellite: altimetro

Future climate changes

Risorse Naturali

Sviluppo tecnologico

 T° up to + 1.6°C

Min: 0.9°C Max: 2.4°C

CO₂ ~ 440 ppm

Up to 38 cm in 2100

Source: SROCC & AR6 IPCC, 2019-2021

 T° up to + 1.6°C

Min: 0.9°C Max: 2.4°C

CO₂ ~ 440 ppm

Up to 38 cm in 2100

 T° up to + 1.6°C

Min: 0.9°C Max: 2.4°C

CO₂ ~ 440 ppm

Up to 38 cm in 2100

Up to 38 cm

in 2100

 T° up to + 1.6°C

Min: 0.9°C Max: 2.4°C

CO₂ ~ 440 ppm

Up to 38 cm in 2100

 T° up to + 4.3°C

Min: 3.2°C Max: 5.4°C

CO₂ ~ 1130 ppm

Source: SROCC & AR6 IPCC, 2019-2021

 T° up to + 4.3°C

Min: 3.2°C Max: 5.4°C

CO₂ ~ 1130 ppm

 T° up to + 4.3°C

Min: 3.2°C Max: 5.4°C

Atmospheric CO₂ ~ 1130 ppm Temperature Oceanic heat Acidification

Source: SROCC & AR6 IPCC, 2019-2021

 T° up to + 4.3°C

Min: 3.2°C Max: 5.4°C

CO₂ ~ 1130 ppm

Projected sea level rise until 2100

*IPCC AR6: ocean + land ice + vertical movements

Why should we care for Antarctica?

How is Antarctica?

Antarctic ice flow

Antarctic ice flow

Antarctic vulnerability to climatic changes

Bed topography below the ice sheetBlue: below sea levelBrownish: above sea level

Morlinghem et al. (2020)

Antarctic vulnerability to climatic changes

Bed topography below the ice sheetBlue: below sea levelBrownish: above sea level

Oceanic

Warming

Bedrock

Morlinghem et al. (2020)

It does not all stops in 2100...need to look beyond

The ocean traps heat on the long term

The ice traps heat on the long term

Long-term projections Allows us to understand The real impact of our environmental policies

e) Global mean sea

level change in 2300 relative to 1900

Sea level rise greater than 15m **cannot** be ruled out with high emissions

9m

8m

7m

6m

5m

4m

3m

SSP5-8.5

Are sea level projections science fiction?

Thanks to paleoclimatic reconstructions

Impact of sea level rise Low coastal areas Delta Floodings due to Strom or high tides: More frequent Permanently flooded areas **Extreme events:** 11 11 +intense +frequent 11 Coastal Erosion 🔨 11 11 11 11 Ν High tide 🥄 **Urban floods:** Loss/changes Difficult drainage of rainfall In local Low tide ecosystems Salty water intrusions: Contamination of aquifers Inhibited agriculture Source: IPCC, SROCC, sept. 2019

Impact of sea level rise

Human migrations

Green & blu economies

We need to adapt

Different types of responses to coastal risk and sea level rise

We need to adapt

Different types of responses to coastal risk and sea level rise

We can't avoid sea level rise

Just mitigate it.

